Pretraining effects
Contents
Pretraining effects#
We use libero_90
as the data source for pretraining, and then test the pretrained agent’s LLDM performance on libero_10
.
Pretrain on LIBERO-90#
Replace GPU_ID
with the cuda device ID. The trained agent will be saved into the ./experiments_pretrained/
folder.
export CUDA_VISIBLE_DEVICES=GPU_ID && export MUJOCO_EGL_DEVICE_ID=GPU_ID && python lifelong/main.py seed=SEED benchmark_name=BENCHMARK policy=POLICY lifelong=multitask pretrain=true train.num_workers=8
Finetune on LIBERO-10#
Replace the CKPT_PATH
with the path to the saved checkpoint of the pretrained agent.
export CUDA_VISIBLE_DEVICES=GPU_ID && export MUJOCO_EGL_DEVICE_ID=GPU_ID && python lifelong/main.py seed=SEED benchmark_name=BENCHMARK policy=POLICY lifelong=ALGO pretrain_model_path=CKPT_PATH